Alterations in the structure of the ribose moiety of ATP reduce its effectiveness as a substrate for the sarcoplasmic reticulum ATPase.
نویسندگان
چکیده
The substrate specificity of the calcium ATPase of isolated sarcoplasmic reticulum vesicles was examined using a series of ribose-modified ATP analogs. Steady state hydrolytic rate measurements using analogs modified at the 2'- and 3'-positions demonstrate that both hydroxyl groups contribute to substrate specificity and high catalytic activity. The 3'-hydroxyl is especially significant in this regard since all analogs modified at the 3'-position were slowly hydrolyzed, if at all, and they did not produce the activation at millimolar concentrations characteristically observed with ATP. In contrast, ATP analogs modified only at the 2'-position were more rapidly hydrolyzed (although at rates less than for ATP), and they did produce activation at millimolar concentrations. These results suggest that neither the catalytic (high affinity) nor the regulatory (low affinity) site of the CaATPase tolerates changes in the hydroxyl substituent at the 3'-position of ATP, whereas steady state rates associated with substrate binding at both types of sites are less affected by changes in the 2'-hydroxyl of ATP.
منابع مشابه
The Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کاملpH and magnesium dependence of ATP binding to sarcoplasmic reticulum ATPase. Evidence that the catalytic ATP-binding site consists of two domains.
Nucleotide binding to sarcoplasmic reticulum vesicles was investigated in the absence of calcium using both filtration and fluorescence measurements. Filtration assays of binding of radioactive nucleotides at concentrations up to 0.1 mM gave a stoichiometry of one ATP-binding site/sarcoplasmic reticulum ATPase molecule. When measured in the presence of calcium under otherwise similar conditions...
متن کاملElimination of the hydroxyl groups in the ribose ring of ATP reduces its ability to phosphorylate the sarcoplasmic reticulum Ca(2+)-ATPase.
2'-Deoxyadenosine 5'-triphosphate, 3'-deoxyadenosine 5'-triphosphate, and 3'-amino-3'-deoxyadenosine 5'-triphosphate were substituted for ATP in the Ca2+ pumping cycle of the sarcoplasmic reticulum Ca(2+)-ATPase. The rate of phosphorylation of the enzyme decreased by more than an order of magnitude when either of the hydroxyl groups was eliminated from the ribose ring. This resulted in low rate...
متن کاملPoges 387-394 ACYLPHOSPHATASE STIMULATES Ca 2+ TRANSPORT AND Ca2+-DEPENDENT ATPase ACTIVITY IN CARDIAC SARCOPLASMIC RETICULUM
Acylphosphatase purified from heart muscle actively hydrolyzes the phosphoenzyme intermediate of cardiac sarcoplasmic reticulum Ca2+-ATPase. This effect was evident with acylphosphatase concentrations (up to 100 units/mg sarcoplasmic reticulum .protein) that fall within the physiological range, and the low value of the apparent Kin, on the order of 10t M, suggests a high affinity towards this s...
متن کاملActivation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations.
The rates of calcium transport and Ca2+-dependent ATP hydrolysis by rabbit skeletal muscle sarcoplasmic reticulum were stimulated by monovalent cations. The rate of decomposition of phosphoprotein intermediate of the Ca2+-dependent ATPase of sarcoplasmic reticulum was also increased by these ions to an extent that is sufficient to account for the stimulation of calcium transport and Ca2+-depend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 258 23 شماره
صفحات -
تاریخ انتشار 1983